Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

9-Phenyl-3,4,4a,9a-tetrahydrotriptycene and 9-phenyl-1,2,3,4,4a,9ahexahydrotriptycene

Shaoming Duan, Ronald J. Baker and John Masnovi*

Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA Correspondence e-mail: j.masnovi@popmail.csuohio.edu

Received 6 July 1999
Accepted 20 September 1999
The structure of 9-phenyl-3,4,4a,9a-tetrahydrotriptycene, $\mathrm{C}_{26} \mathrm{H}_{22}$, (I), exhibits regiochemistry consistent with a stepwise mechanism for its formation from photocycloaddition of 1,3cyclohexadiene and 9-phenylanthracene. Bond distances involving the bridgehead C atoms are similar in (I) and the hydrogenated derivative, 9-phenyl-1,2,3,4,4a,9a-hexahydrotriptycene, $\mathrm{C}_{26} \mathrm{H}_{24}$, (II), with bonds to the quaternary-C atoms exhibiting significant elongation $[1.581$ (2) \AA in (I) and 1.585 (2) \AA in (II)]. The molecular geometry precludes significant $\sigma-\pi$ overlap between the phenyl groups and the interannular bonds in both compounds, indicating that the origin of the bond lengthening is steric in nature.

Comment

The C12-C13 double bond of (I) is proximal to the phenyl substituent. This regiochemistry is consistent with a stepwise mechanism for formation of (I) which involves the more stable biradical intermediate (Kaupp \& Teufel, 1980; Wang et al., 1982). The cyclohexylene ring in (II) adopts a boat conformation. Two H atoms (determined by NMR decoupling experiments to be attached to C 12 and C15) are found to be highly shielded in the NMR spectrum of (II).

(I)

(II)

The H12A and H15A endo-H atoms are assigned to these resonances at 0.22 and 0.78 p.p.m., respectively. A single hydrogen (H15A) of (I) appears at a similarly high field (0.84 p.p.m.). The large shieldings of $\mathrm{H} 15 A$ and $\mathrm{H} 12 A$ are ascribed to their positions within the anisotropic shielding regions of two (for $\mathrm{H} 15 A$) or three (for $\mathrm{H} 12 A$) neighboring benzene rings.

Bond distances about the C 9 and C 10 atoms are similar in (I) and (II), and indicate the presence of significant steric effects involving the phenyl group attached to C9 (see Figs. 1

Figure 1
ORTEPII (Johnson, 1976) representation of (I) with displacement ellipsoids at 30% probability showing the atom-numbering scheme.

Figure 2
ORTEPII (Johnson, 1976) of (II) with displacement ellipsoids at 30% probability showing the atom-numbering scheme.

Packing diagram of (I), projection along the c axis.

Figure 4
Packing diagram of (II), projection along the c axis.
and 2). Thus, the bond distances involving the bicyclic framework about C9 are observed to be $0.022-0.050 \AA$ longer than the corresponding distances about C10. For example, the interannular C9-C11 bond is 1.581 (2) \AA in (I) and 1.585 (2) \AA in (II), whereas the related $\mathrm{C} 10-\mathrm{C} 16$ bond distances are 1.559 (2) \AA in (I) and 1.550 (2) \AA in (II). The phenyl substituents are rotated slightly from the plane defined by the bridgehead C atoms ($\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11$ and C 16). The dihedral angle between this plane and the plane of the phenyl groups is $12.08(7)^{\circ}$ in (I) and 13.39 (8) ${ }^{\circ}$ in (II). This orientation precludes significant hyperconjugation between the phenyl substituent and the $\mathrm{C} 9-\mathrm{C} 11 \sigma$ bond, and discounts $\sigma-$ π through-bond coupling (Osawa et al., 1983) as contributing to elongation of the bonds in these molecules (Baldridge et al., 1997). One C atom (C12) of the double bond of (I) exhibits a close contact [3.022 (2) Å] with a C atom (C8a) of the subjacent phenyl ring. However, the resulting $\pi-\pi$ interactions (Dougherty et al., 1986), if any, do not contribute to lengthening of the C $9-\mathrm{C} 11$ bond, which is $0.004 \AA$ longer in (II) (in which this bond is saturated) than in (I).

The cell constants of (I) and (II) are similar. Except for atoms near the double bond of (I), the structures of (I) and (II) are nearly superimposable. The resemblance of the polycyclic frameworks of (I) and (II) apparently allows for similar packing in the crystals (Figs. 3 and 4).

Experimental

A Pyrex irradiation vessel equipped with argon inlet and Tefloncoated magnetic stir-bar was charged with benzene (56 ml), 9phenylanthracene ($151 \mathrm{mg}, 0.59 \mathrm{mmol}$), and 1,3-cyclohexadiene
($5.9 \mathrm{ml}, 1.0 \mathrm{M}$) (Kaupp \& Teufel, 1980). The solution was deaerated by purging with argon for 30 min prior to irradiation. Irradiation of the solution was performed with stirring under argon, using a Hanovia 450 W medium pressure mercury lamp housed in a watercooled quartz immersion well. A cylindrical uranium glass filter was used to cut off light with wavelengths shorter than about 330 nm . The temperature of the solution during irradiation was maintained at 292 (2) K. Progress of the reaction was monitored by means of thinlayer chromatography and NMR spectroscopic analysis. When complete (3 h), the irradiation was stopped and the solvent was evaporated under reduced pressure. The crude product was chromatographed over Woelm (activity I) alumina. Products eluted fractionally with dichloromethane and petroleum ether. Fractions determined to contain adduct (I) were combined and recrystallized from dichloromethane-ethanol to afford colorless prisms, m.p. 459 K , ${ }^{1} \mathrm{H}$ NMR (chloroform- d): $7.56(m), 7.47(m), 7.31(m), 7.11(m), 6.92$ (m), $6.25(d, 7.7 \mathrm{~Hz}), 5.78(\mathrm{~m}), 5.68(\mathrm{~m}), 4.18(d, 1.9 \mathrm{~Hz}), 3.07(b d$, $10.0 \mathrm{~Hz}), 2.42(\mathrm{~m}), 1.88(\mathrm{~m}), 1.67(\mathrm{~m}), 1.23(\mathrm{~m}), 0.84$ p.p.m. (m). Adduct (I) (100 mg) was dissolved in 50 ml ethyl acetate in a 100 ml round-bottom flask containing a magnetic stir-bar, and 25 mg of 10% Pd / C powder was added. The stirred suspension was deaerated by repeated evacuation and charging with hydrogen gas. Hydrogenation was effected by allowing the mixture to stir for 24 h at room temperature under a slight positive pressure of hydrogen (although the initial uptake of hydrogen was rapid, suggesting that the reaction probably was complete in about 30 min). The product was collected by filtration through Celite, and the solvent was removed at reduced pressure. The crude product was passed through a short column of Woelm alumina (ICN, activity I) eluting with dichloromethanepetroleum ether. Fractions containing product (II) were combined and recrystallized from ethyl acetate to afford 87 mg (86%) of colorless needles, ${ }^{1} \mathrm{H}$ NMR (chloroform- d): $7.55(m), 7.42(m), 7.32$ (m), 7.05-7.19 (m), 6.91 (m), 6.20 (d, 8.1 Hz), 4.06 (d, 8.1), 2.46 (m), $2.04(m), 1.64(m), 1.27-1.53(m), 0.78(m), 0.22$ p.p.m. (m).

Compound (I)

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{22}$
$M_{r}=334.46$
Triclinic, $P \overline{1}$
$a=9.3991$ (7) A
$b=9.7733$ (4) \AA
$c=10.5899$ (7) \AA
$\alpha=90.376(4)^{\circ}$
$\beta=71.465(5)^{\circ}$
$\gamma=104.463(5)^{\circ}$
$V=890.29(10) \AA^{3}$

Data collection

Nonius CAD-4 diffractometer ω scans
3306 measured reflections
3120 independent reflections
2527 reflections with $I_{\text {net }}>2 \sigma\left(I_{\text {net }}\right)$
$R_{\text {int }}=0.009$
$\theta_{\text {max }}=24.93^{\circ}$

Refinement

Refinement on F
$w=1 /\left[\sigma^{2}(F)+0.0003 F^{2}\right]$
$R=0.042$
$w R=0.050$
$S=2.03$
2526 reflections
236 parameters
H -atom parameters not refined
$Z=2$
$D_{x}=1.248 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=7.9-18.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.48 \times 0.47 \times 0.47 \mathrm{~mm}$

$$
\begin{aligned}
& h=-11 \rightarrow 10 \\
& k=0 \rightarrow 11 \\
& l=-12 \rightarrow 12 \\
& 5 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: } 1.5 \%
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA) for (I).

C4a-C10	$1.497(2)$	C11-C12	$1.512(2)$
C8a-C9	$1.535(2)$	C11-C16	$1.567(2)$
C9-C9a	$1.547(2)$	C12-C13	$1.319(2)$
C9-C11	$1.581(2)$	C13-C14	$1.484(3)$
C9-C17	$1.528(2)$	C14-C15	$1.519(2)$
C10-C10a	$1.506(2)$	C15-C16	$1.527(2)$
C10-C16	$1.559(2)$		

Compound (II)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{24} \\
& M_{r}=336.47 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.2213(6) \AA \\
& b=9.8777(10) \AA \\
& c=10.7390(8) \AA \\
& \alpha=90.738(8)^{\circ} \\
& \beta=107.829(6)^{\circ} \\
& \gamma=104.052(7)^{\circ} \\
& V=899.28(13) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

Data collection

Nonius CAD-4 diffractometer

 ω scansAbsorption correction: none
$=25.0^{\circ}$

3334 measured reflections
$h=-10 \rightarrow 10$

3147 independent reflections
2444 reflections with $I_{\text {net }}>2 \sigma\left(I_{\text {net }}\right)$
$R_{\text {int }}=0.014$

$$
\begin{aligned}
& D_{x}=1.243 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.70930 \AA \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=8.4-17.6^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Needle, colorless } \\
& 0.30 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F
$R=0.041$
$w R=0.044$
$S=1.94$
2442 reflections
236 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0002 F^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{\AA^{-3}}$
Extinction correction: Larson (1970)

Extinction coefficient: 0.57 (7)

H atoms were were located but not refined $[\mathrm{C}-\mathrm{H} 0.957-1.019 \AA$ for (I) and $0.96-1.03 \AA$ for (II)]; for (I) the temperature factors of the H atoms were refined in the early stages of refinement, but were fixed in the later stages.

For both compounds, data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: SET4 and CELDIM in CAD-4-PC; data reduction: DATRD2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: $S O L V E R$ in $N R C V A X$; program(s) used to

Table 2
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

C4a-C10	$1.503(2)$	C11-C12	$1.528(2)$
C8a-C9	$1.534(2)$	C11-C16	$1.566(2)$
C9-C9a	$1.542(2)$	C12-C13	$1.524(2)$
C9-C11	$1.585(2)$	C13-C14	$1.522(3)$
C9-C17	$1.527(2)$	C14-C15	$1.514(3)$
C10-C10a	$1.500(2)$	C15-C16	$1.527(2)$
C10-C16	$1.550(2)$		
C4-C4a-C9a	$120.84(15)$	C4a-C10-C16	$105.55(13)$
C4-C4a-C10	$126.02(15)$	C10a-C10-C16	$108.35(13)$
C9a-C4a-C10	$113.10(13)$	C5-C10a-C8a	$120.44(15)$
C8-C8a-C9	$127.93(14)$	C5-C10a-C10	$125.31(15)$
C8-C8a-C10a	$118.66(15)$	C8a-C10a-C10	$114.24(14)$
C9-C8a-C10a	$113.24(13)$	C9-C11-C12	$113.48(13)$
C8a-C9-C9a	$106.04(12)$	C9-C11-C16	$110.01(12)$
C8a-C9-C11	$104.34(12)$	C12-C11-C16	$110.19(13)$
C8a-C9-C17	$115.20(12)$	C11-C12-C13	$111.27(14)$
C9a-C9-C11	$106.01(12)$	C12-C13-C14	$113.13(14)$
C9a-C9-C17	$110.25(13)$	C13-C14-C15	$111.48(14)$
C11-C9-C17	$114.25(12)$	C14-C15-C16	$110.77(15)$
C1-C9a-C4a	$118.81(14)$	C10-C16-C11	$109.19(12)$
C1-C9a-C9	$126.94(14)$	C10-C16-C15	$112.30(14)$
C4a-C9a-C9	$114.25(14)$	C11-C16-C15	$112.45(13)$
C4a-C10-C10a	$107.87(13)$		

refine structure: $L S T S Q$ in $N R C V A X$; molecular graphics: $N R C V A X$; software used to prepare material for publication: TABLES in NRCVAX (version of January 94).

Support from the CSU College of Graduate Studies is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1498). Services for accessing these data are described at the back of the journal.

References

Baldridge, K. K., Battersby, T. R., Clark, R. V. \& Siegel, J. S. (1997). J. Am. Chem. Soc. 119, 7048-7054.
Dougherty, D. A., Choi, C. S., Kaupp, G., Buda, A. B., Rudzinski, J. M. \& Osawa, E. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1063-1070.
Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kaupp, G. \& Teufel, E. (1980). Chem. Ber. 113, 3669-3674.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Osawa, E., Ivanov, P. M. \& Jaime, C. (1983). J. Org. Chem. 48, 3990-3993.
Wang, T., Ni, J., Masnovi, J. \& Yang, N. C. (1982). Tetrahedron Lett. 23, 12311234.

